On Extremal Graphs with Internally Disjoint Steiner Trees
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

The problem of determining the smallest number of edges, $h(n;\overline{\kappa}\geq r)$, which guarantees that any graph with $n$ vertices and $h(n;\overline{\kappa}\geq r)$ edges will contain a pair of vertices joined by $r$ internally disjoint paths was posed by Erd\"{o}s and Gallai. Bollob\'{a}s considered the problem of determining the largest number of edges $f(n;\overline{\kappa}\leq \ell)$ for graphs with $n$ vertices and local connectivity at most $\ell$. One can see that $f(n;\overline{\kappa}\leq \ell)= h(n;\overline{\kappa}\geq \ell+1)-1$. These two problems had received a wide attention of many researchers in the last few decades. In the above problems, only pairs of vertices connected by internally disjoint paths are considered. In this paper, we study the number of internally disjoint Steiner trees connecting sets of vertices with cardinality at least $3$.
Classification : 05C40, 05C05, 05C35, 05C75
@article{BMMS_2014_37_3_a11,
     author = {Hengzhe Li and Xueliang Li and Yaping Mao},
     title = {On {Extremal} {Graphs} with  {Internally} {Disjoint} {Steiner} {Trees}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a11/}
}
TY  - JOUR
AU  - Hengzhe Li
AU  - Xueliang Li
AU  - Yaping Mao
TI  - On Extremal Graphs with  Internally Disjoint Steiner Trees
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a11/
ID  - BMMS_2014_37_3_a11
ER  - 
%0 Journal Article
%A Hengzhe Li
%A Xueliang Li
%A Yaping Mao
%T On Extremal Graphs with  Internally Disjoint Steiner Trees
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a11/
%F BMMS_2014_37_3_a11
Hengzhe Li; Xueliang Li; Yaping Mao. On Extremal Graphs with  Internally Disjoint Steiner Trees. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2014_37_3_a11/