The Independence Number of $\Gamma(\mathbb{Z}_{p^{n}}(x))$
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
The zero-divisor graph of a commutative ring with unity (say $R$) is a graph whose vertices are the nonzero zero-divisors of this ring, where two distinct vertices are adjacent when their product is zero. This graph is denoted by $\Gamma(R)$. In this paper, we study the structure of the zero-divisor graph $\Gamma(\mathbb{Z}_{p^{n}}(x))$ where p is an odd prime number, $\mathbb{Z}_{p^{n}}$ is the set of integers modulo $p^{n}$, and $\mathbb{Z}_{p^{n}}(x)$ = {$fa+bx : a,b ∉ \mathbb{Z}_{p^{n}}$ and $x2 = 0$}. We find the Independence number of $\Gamma(\mathbb{Z}_{p^{n}}(x))$.
Classification :
05C69, 13A99
@article{BMMS_2014_37_2_a4,
author = {Omar A. AbuGhneim and Emad E. AbdAlJawad and Hasan Al-Ezeh},
title = {The {Independence} {Number} of $\Gamma(\mathbb{Z}_{p^{n}}(x))$},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a4/}
}
TY - JOUR
AU - Omar A. AbuGhneim
AU - Emad E. AbdAlJawad
AU - Hasan Al-Ezeh
TI - The Independence Number of $\Gamma(\mathbb{Z}_{p^{n}}(x))$
JO - Bulletin of the Malaysian Mathematical Society
PY - 2014
VL - 37
IS - 2
UR - http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a4/
ID - BMMS_2014_37_2_a4
ER -
Omar A. AbuGhneim; Emad E. AbdAlJawad; Hasan Al-Ezeh. The Independence Number of $\Gamma(\mathbb{Z}_{p^{n}}(x))$. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a4/