$FP$-Gorenstein Cotorsion Modules
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $R$ be a ring. In this paper, $FP$-Gorenstein cotorsion modules are introduced and studied. An $R$-module $N$ is said to be $FP$-Gorenstein cotorsion if $Ext_R^1(F,N)=0$ for any finitely presented Gorenstein flat $R$-module $F$. We prove that the class of $FP$-Gorenstein cotorsion modules is covering and preenveloping over coherent rings. $FP$-Gorenstein cotorsion dimension of modules and rings are also studied. Some properties of $FP$-Gorenstein cotorsion modules are given.
Classification : 16D50, 16D40, 16E10, 16E30
@article{BMMS_2014_37_2_a17,
     author = {Ruiping Lei},
     title = {$FP${-Gorenstein} {Cotorsion} {Modules}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a17/}
}
TY  - JOUR
AU  - Ruiping Lei
TI  - $FP$-Gorenstein Cotorsion Modules
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a17/
ID  - BMMS_2014_37_2_a17
ER  - 
%0 Journal Article
%A Ruiping Lei
%T $FP$-Gorenstein Cotorsion Modules
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a17/
%F BMMS_2014_37_2_a17
Ruiping Lei. $FP$-Gorenstein Cotorsion Modules. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a17/