The Artinianness of Formal Local Cohomology Modules
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let I be an ideal of a commutative Noetherian local ring $(R,\frak{m})$, $M$ a finitely generated $R$-module and $\underset{n}{\varprojlim}\, H^i_{\frak{m}}(M/I^nM)$ the $i$-th formal local cohomology module of $M$ with respect to $I$. We prove some results concerning artinianness of $\underset{n}{\varprojlim}\,H^i_{\frak{m}}(M/I^nM)$. We discuss the maximum and minimum integers such that $\underset{n}{\varprojlim}\, H^i_{\frak{m}}(M/I^nM)$ is artinian.
Classification : 13D45, 13E10, 13E15
@article{BMMS_2014_37_2_a12,
     author = {Yan Gu},
     title = {The {Artinianness} of {Formal} {Local} {Cohomology} {Modules}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a12/}
}
TY  - JOUR
AU  - Yan Gu
TI  - The Artinianness of Formal Local Cohomology Modules
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a12/
ID  - BMMS_2014_37_2_a12
ER  - 
%0 Journal Article
%A Yan Gu
%T The Artinianness of Formal Local Cohomology Modules
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a12/
%F BMMS_2014_37_2_a12
Yan Gu. The Artinianness of Formal Local Cohomology Modules. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a12/