The Artinianness of Formal Local Cohomology Modules
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let I be an ideal of a commutative Noetherian local ring $(R,\frak{m})$, $M$ a finitely generated $R$-module and $\underset{n}{\varprojlim}\, H^i_{\frak{m}}(M/I^nM)$ the $i$-th formal local cohomology module of $M$ with respect to $I$. We prove some results concerning artinianness of $\underset{n}{\varprojlim}\,H^i_{\frak{m}}(M/I^nM)$. We discuss the maximum and minimum integers such that $\underset{n}{\varprojlim}\, H^i_{\frak{m}}(M/I^nM)$ is artinian.
Classification :
13D45, 13E10, 13E15
@article{BMMS_2014_37_2_a12,
author = {Yan Gu},
title = {The {Artinianness} of {Formal} {Local} {Cohomology} {Modules}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a12/}
}
Yan Gu. The Artinianness of Formal Local Cohomology Modules. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a12/