Moufang Loops of Odd Order $pq^4$
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

The paper continues on the characterisation of positive integers n for which all Moufang loops of order n are associative. We study the case $n = pq^4$ where p and q are distinct odd primes, and show that all Moufang loops of order $pq^4$ are associative if and only if $q ≠ 3$ and $q ≠ 1$ (mod p ).
Classification : 20N05
@article{BMMS_2014_37_2_a10,
     author = {Wing Loon Chee and Andrew Rajah},
     title = {Moufang {Loops} of {Odd} {Order} $pq^4$},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a10/}
}
TY  - JOUR
AU  - Wing Loon Chee
AU  - Andrew Rajah
TI  - Moufang Loops of Odd Order $pq^4$
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a10/
ID  - BMMS_2014_37_2_a10
ER  - 
%0 Journal Article
%A Wing Loon Chee
%A Andrew Rajah
%T Moufang Loops of Odd Order $pq^4$
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a10/
%F BMMS_2014_37_2_a10
Wing Loon Chee; Andrew Rajah. Moufang Loops of Odd Order $pq^4$. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2014_37_2_a10/