Cohen-Macaulay Simplicial Complexes of Degree $k$
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

For a positive integer $k$ a class of simplicial complexes, to be denoted by CM($k$), is introduced. This class generalizes Cohen-Macaulay simplicial complexes. In analogy with the Cohen-Macaulay complexes, we give some homological and combinatorial properties of CM($k$) complexes. It is shown that the complex $Δ$ is CM($k$) if and only if $I_{Δ^\vee}$, the Stanley-Reisner ideal of the Alexander dual of $Δ$, has a $k$-resolution, i.e. $\beta_{i.j}(I_{Δ^\vee})=0$ unless $j=ik+q$, where $q$ is the degree of $I_{Δ^\vee}$. As a main result, we characterize all bipartite graphs whose independence complexes are CM($k$) and show that an unmixed bipartite graph is CM($k$) if and only if it is pure $k$-shellable. Our result improves a result due to Herzog and Hibi and also a result due to Villarreal.
Classification : Primary 13H10; Secondary 05C75
@article{BMMS_2014_37_1_a9,
     author = {Rahim Rahmati-Asghar},
     title = {Cohen-Macaulay {Simplicial} {Complexes} of {Degree} $k$},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a9/}
}
TY  - JOUR
AU  - Rahim Rahmati-Asghar
TI  - Cohen-Macaulay Simplicial Complexes of Degree $k$
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a9/
ID  - BMMS_2014_37_1_a9
ER  - 
%0 Journal Article
%A Rahim Rahmati-Asghar
%T Cohen-Macaulay Simplicial Complexes of Degree $k$
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a9/
%F BMMS_2014_37_1_a9
Rahim Rahmati-Asghar. Cohen-Macaulay Simplicial Complexes of Degree $k$. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a9/