Numerical Solution of Nonlinear Volterra Integral Equations with Nonincreasing Kernel and an Application
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $R$ be a commutative ring and let $M$ be a top $R$-module. In this article, we investigate some properties of a new class of modules, called strongly top modules. Studying of this family provides an important tool for studying of the prime spectrum of $M$ from the point of view of spectral spaces with different Zariski and quasi Zariski topologies
Classification : 13C13, 13C99
@article{BMMS_2014_37_1_a7,
     author = {K. Maleknejad and E. Najafi},
     title = {Numerical {Solution} of {Nonlinear} {Volterra} {Integral} {Equations} with {Nonincreasing} {Kernel} and an {Application}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a7/}
}
TY  - JOUR
AU  - K. Maleknejad
AU  - E. Najafi
TI  - Numerical Solution of Nonlinear Volterra Integral Equations with Nonincreasing Kernel and an Application
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a7/
ID  - BMMS_2014_37_1_a7
ER  - 
%0 Journal Article
%A K. Maleknejad
%A E. Najafi
%T Numerical Solution of Nonlinear Volterra Integral Equations with Nonincreasing Kernel and an Application
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a7/
%F BMMS_2014_37_1_a7
K. Maleknejad; E. Najafi. Numerical Solution of Nonlinear Volterra Integral Equations with Nonincreasing Kernel and an Application. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a7/