Numerical Solution of Nonlinear Volterra Integral Equations with Nonincreasing Kernel and an Application
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $R$ be a commutative ring and let $M$ be a top $R$-module. In this article, we investigate some properties of a new class of modules, called strongly top modules. Studying of this family provides an important tool for studying of the prime spectrum of $M$ from the point of view of spectral spaces with different Zariski and quasi Zariski topologies
Classification :
13C13, 13C99
@article{BMMS_2014_37_1_a7,
author = {K. Maleknejad and E. Najafi},
title = {Numerical {Solution} of {Nonlinear} {Volterra} {Integral} {Equations} with {Nonincreasing} {Kernel} and an {Application}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a7/}
}
TY - JOUR AU - K. Maleknejad AU - E. Najafi TI - Numerical Solution of Nonlinear Volterra Integral Equations with Nonincreasing Kernel and an Application JO - Bulletin of the Malaysian Mathematical Society PY - 2014 VL - 37 IS - 1 UR - http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a7/ ID - BMMS_2014_37_1_a7 ER -
%0 Journal Article %A K. Maleknejad %A E. Najafi %T Numerical Solution of Nonlinear Volterra Integral Equations with Nonincreasing Kernel and an Application %J Bulletin of the Malaysian Mathematical Society %D 2014 %V 37 %N 1 %U http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a7/ %F BMMS_2014_37_1_a7
K. Maleknejad; E. Najafi. Numerical Solution of Nonlinear Volterra Integral Equations with Nonincreasing Kernel and an Application. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a7/