A Non-Vanishing Theorem for Local Cohomology Modules
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Assume that $(R,m)$ a local Noetherian ring and $a$ is an ideal of $R$. In this paper we introduce a new class of $R$-modules denoted by weakly finite modules that is a generalization of finitely generated modules and containing the class of Big Cohen-Macaulay modules and $a$-cofinite modules. We improve the non-vanishing theorem due to Grothendieck for weakly finite modules. Finally we define the notion depth$_{R}M$ and we prove that if $M$ is a weakly finite $R$-module and $H_{m}^{i}(M)\neq 0$ for some $i$, then depth$_{R}M$$\leq i \leq \dim M$.
Classification : 13D45
@article{BMMS_2014_37_1_a6,
     author = {Amir Bagheri},
     title = {A {Non-Vanishing} {Theorem} for {Local} {Cohomology} {Modules}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a6/}
}
TY  - JOUR
AU  - Amir Bagheri
TI  - A Non-Vanishing Theorem for Local Cohomology Modules
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a6/
ID  - BMMS_2014_37_1_a6
ER  - 
%0 Journal Article
%A Amir Bagheri
%T A Non-Vanishing Theorem for Local Cohomology Modules
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a6/
%F BMMS_2014_37_1_a6
Amir Bagheri. A Non-Vanishing Theorem for Local Cohomology Modules. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a6/