$L^{\infty}$-Estimates of Rectangular Mixed Methods for Nonlinear Constrained Optimal Control Problem
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this paper, we investigate the rectangular mixed finite element methods for the quadratic convex optimal control problem governed by nonlinear elliptic equations with pointwise control constraints. The state and the co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive $L^\infty$-error estimates for the rectangular mixed finite element approximation of nonlinear quadratic optimal control problems. Finally, we present some numerical examples which confirm our theoretical results.
Classification :
49J20, 65N30
@article{BMMS_2014_37_1_a23,
author = {Zuliang Lu},
title = {$L^{\infty}${-Estimates} of {Rectangular} {Mixed} {Methods} for {Nonlinear} {Constrained} {Optimal} {Control} {Problem}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a23/}
}
Zuliang Lu. $L^{\infty}$-Estimates of Rectangular Mixed Methods for Nonlinear Constrained Optimal Control Problem. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a23/