Multiple Solutions of Nonlinear Boundary Value Problems for Fractional Differential Equations
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper, we study nonlinear boundary value problems of fractional differential equations. \begin{equation}\label{equ1} %\left\{\begin{array}{lll}\mathbf{D}_{0^{+}}^{q}x(t)=f(t,x(t))~~~~~t\in %J=[0,T]\\ %g( x(0),x(T), x(\eta))=0~~~~~~~~~ \eta\in [0,T],\end{array}\right. \begin{cases}%{lll} \mathbf{D}_{0^{+}}^{q}x(t)=f(t,x(t)) t\in J=[0,T]\\ g\big(x(0),x(T), x(\eta)\big)=0 \eta\in [0,T], \end{cases} \end{equation} where $\mathbf{D}_{0^{+}}$ denotes the Caputo fractional derivative, $0$. Some new results on the multiple solutions are obtained by the use of the Amann theorem and the method of upper and lower solutions. An example is also given to illustrate our results.
Classification : 26A33, 34K37
@article{BMMS_2014_37_1_a20,
     author = {Zhenhai Liu and Jitai Liang},
     title = {Multiple {Solutions} of {Nonlinear} {Boundary} {Value} {Problems} for {Fractional} {Differential} {Equations}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a20/}
}
TY  - JOUR
AU  - Zhenhai Liu
AU  - Jitai Liang
TI  - Multiple Solutions of Nonlinear Boundary Value Problems for Fractional Differential Equations
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a20/
ID  - BMMS_2014_37_1_a20
ER  - 
%0 Journal Article
%A Zhenhai Liu
%A Jitai Liang
%T Multiple Solutions of Nonlinear Boundary Value Problems for Fractional Differential Equations
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a20/
%F BMMS_2014_37_1_a20
Zhenhai Liu; Jitai Liang. Multiple Solutions of Nonlinear Boundary Value Problems for Fractional Differential Equations. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a20/