On the Exterior Degree of the Wreath Product\\ of Finite Abelian Groups
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

The exterior degree $d^\wedge(G)$ of a finite group $G$ has been recently introduced by Rezaei and Niroomand in order to study the probability that two given elements $x$ and $y$ of $G$ commute in the nonabelian exterior square $G \wedge G$. This notion is related with the probability $d(G)$ that two elements of $G$ commute in the usual sense. Motivated by a paper of Erovenko and Sury of
Classification : Primary 20J99; Secondary 20D15, 20P05
@article{BMMS_2014_37_1_a1,
     author = {Ahmad Erfanian and Fadila Normahia Abd Manaf and Francesco G. Russo and Nor Haniza Sarmin},
     title = {On the {Exterior} {Degree} of the {Wreath} {Product\\} of {Finite} {Abelian} {Groups}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2014},
     volume = {37},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a1/}
}
TY  - JOUR
AU  - Ahmad Erfanian
AU  - Fadila Normahia Abd Manaf
AU  - Francesco G. Russo
AU  - Nor Haniza Sarmin
TI  - On the Exterior Degree of the Wreath Product\\ of Finite Abelian Groups
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2014
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a1/
ID  - BMMS_2014_37_1_a1
ER  - 
%0 Journal Article
%A Ahmad Erfanian
%A Fadila Normahia Abd Manaf
%A Francesco G. Russo
%A Nor Haniza Sarmin
%T On the Exterior Degree of the Wreath Product\\ of Finite Abelian Groups
%J Bulletin of the Malaysian Mathematical Society
%D 2014
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a1/
%F BMMS_2014_37_1_a1
Ahmad Erfanian; Fadila Normahia Abd Manaf; Francesco G. Russo; Nor Haniza Sarmin. On the Exterior Degree of the Wreath Product\\ of Finite Abelian Groups. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a1/