On the Exterior Degree of the Wreath Product\\ of Finite Abelian Groups
Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
The exterior degree $d^\wedge(G)$ of a finite group $G$ has been recently introduced by Rezaei and Niroomand in order to study the probability that two given elements $x$ and $y$ of $G$ commute in the nonabelian exterior square $G \wedge G$. This notion is related with the probability $d(G)$ that two elements of $G$ commute in the usual sense. Motivated by a paper of Erovenko and Sury of
Classification :
Primary 20J99; Secondary 20D15, 20P05
@article{BMMS_2014_37_1_a1,
author = {Ahmad Erfanian and Fadila Normahia Abd Manaf and Francesco G. Russo and Nor Haniza Sarmin},
title = {On the {Exterior} {Degree} of the {Wreath} {Product\\} of {Finite} {Abelian} {Groups}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2014},
volume = {37},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a1/}
}
TY - JOUR AU - Ahmad Erfanian AU - Fadila Normahia Abd Manaf AU - Francesco G. Russo AU - Nor Haniza Sarmin TI - On the Exterior Degree of the Wreath Product\\ of Finite Abelian Groups JO - Bulletin of the Malaysian Mathematical Society PY - 2014 VL - 37 IS - 1 UR - http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a1/ ID - BMMS_2014_37_1_a1 ER -
%0 Journal Article %A Ahmad Erfanian %A Fadila Normahia Abd Manaf %A Francesco G. Russo %A Nor Haniza Sarmin %T On the Exterior Degree of the Wreath Product\\ of Finite Abelian Groups %J Bulletin of the Malaysian Mathematical Society %D 2014 %V 37 %N 1 %U http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a1/ %F BMMS_2014_37_1_a1
Ahmad Erfanian; Fadila Normahia Abd Manaf; Francesco G. Russo; Nor Haniza Sarmin. On the Exterior Degree of the Wreath Product\\ of Finite Abelian Groups. Bulletin of the Malaysian Mathematical Society, Tome 37 (2014) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2014_37_1_a1/