Hopf Hypersurfaces with $\eta$-Parallel Shape Operator in Complex Two-Plane Grassmannians
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

We consider a new notion of $\eta$-parallel shape operator in complex two-plane Grassmannians $\ G _{2}(\mathbb{C}^{m+2})$ and give a non-existence theorem for a Hopf hypersurface $M$ in $\ G _{2}(\mathbb{C}^{m+2})$ with $\eta$-parallel shape operator.
Classification : Primary 53C40;Secondary 53C15
@article{BMMS_2013_36_4_a8,
     author = {Hyunjin Lee and Seonhui Kim},
     title = {Hopf {Hypersurfaces} with $\eta${-Parallel} {Shape} {Operator} in {Complex} {Two-Plane} {Grassmannians}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a8/}
}
TY  - JOUR
AU  - Hyunjin Lee
AU  - Seonhui Kim
TI  - Hopf Hypersurfaces with $\eta$-Parallel Shape Operator in Complex Two-Plane Grassmannians
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a8/
ID  - BMMS_2013_36_4_a8
ER  - 
%0 Journal Article
%A Hyunjin Lee
%A Seonhui Kim
%T Hopf Hypersurfaces with $\eta$-Parallel Shape Operator in Complex Two-Plane Grassmannians
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a8/
%F BMMS_2013_36_4_a8
Hyunjin Lee; Seonhui Kim. Hopf Hypersurfaces with $\eta$-Parallel Shape Operator in Complex Two-Plane Grassmannians. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a8/