Hopf Hypersurfaces with $\eta$-Parallel Shape Operator in Complex Two-Plane Grassmannians
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
We consider a new notion of $\eta$-parallel shape operator in complex two-plane Grassmannians $\ G _{2}(\mathbb{C}^{m+2})$ and give a non-existence theorem for a Hopf hypersurface $M$ in $\ G _{2}(\mathbb{C}^{m+2})$ with $\eta$-parallel shape operator.
Classification :
Primary 53C40;Secondary 53C15
@article{BMMS_2013_36_4_a8,
author = {Hyunjin Lee and Seonhui Kim},
title = {Hopf {Hypersurfaces} with $\eta${-Parallel} {Shape} {Operator} in {Complex} {Two-Plane} {Grassmannians}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {4},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a8/}
}
Hyunjin Lee; Seonhui Kim. Hopf Hypersurfaces with $\eta$-Parallel Shape Operator in Complex Two-Plane Grassmannians. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a8/