An Ultrametric Lethargy Result and Its Application to $p$-Adic Number Theory
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper we show a lethargy result in the non-Archimedean context, for general ultrametric approximation schemes and, as a consequence, we prove the existence of $p$-adic transcendental numbers whose best approximation errors by algebraic $p$-adic numbers of degree $\leq n$ decays slowly.
Classification : 46S10, 41A65, A1A25, 11J61, 11J81, 11K60
@article{BMMS_2013_36_4_a7,
     author = {J. M. Almira},
     title = {An {Ultrametric} {Lethargy} {Result} and {Its} {Application} to $p${-Adic} {Number} {Theory}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a7/}
}
TY  - JOUR
AU  - J. M. Almira
TI  - An Ultrametric Lethargy Result and Its Application to $p$-Adic Number Theory
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a7/
ID  - BMMS_2013_36_4_a7
ER  - 
%0 Journal Article
%A J. M. Almira
%T An Ultrametric Lethargy Result and Its Application to $p$-Adic Number Theory
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a7/
%F BMMS_2013_36_4_a7
J. M. Almira. An Ultrametric Lethargy Result and Its Application to $p$-Adic Number Theory. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a7/