An Ultrametric Lethargy Result and Its Application to $p$-Adic Number Theory
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this paper we show a lethargy result in the non-Archimedean context, for general ultrametric approximation schemes and, as a consequence, we prove the existence of $p$-adic transcendental numbers whose best approximation errors by algebraic $p$-adic numbers of degree $\leq n$ decays slowly.
Classification :
46S10, 41A65, A1A25, 11J61, 11J81, 11K60
@article{BMMS_2013_36_4_a7,
author = {J. M. Almira},
title = {An {Ultrametric} {Lethargy} {Result} and {Its} {Application} to $p${-Adic} {Number} {Theory}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {4},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a7/}
}
J. M. Almira. An Ultrametric Lethargy Result and Its Application to $p$-Adic Number Theory. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a7/