Oscillation Theorems for Second-Order Quasi-Linear Delay Dynamic Equations Delay Dynamic Equations
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
This paper is concerned with the oscillation of a class of second-order quasi-linear delay dynamic equations on an arbitrary time scale. Three new oscillation theorems and two illustrative examples are presented that improve those known results in the literature.
Classification :
34K11, 39A10
@article{BMMS_2013_36_4_a5,
author = {Shuhong Tang and second Cunchen Gao and Tongxing Li},
title = {Oscillation {Theorems} for {Second-Order} {Quasi-Linear} {Delay} {Dynamic} {Equations} {Delay} {Dynamic} {Equations}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {4},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a5/}
}
TY - JOUR AU - Shuhong Tang AU - second Cunchen Gao AU - Tongxing Li TI - Oscillation Theorems for Second-Order Quasi-Linear Delay Dynamic Equations Delay Dynamic Equations JO - Bulletin of the Malaysian Mathematical Society PY - 2013 VL - 36 IS - 4 UR - http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a5/ ID - BMMS_2013_36_4_a5 ER -
%0 Journal Article %A Shuhong Tang %A second Cunchen Gao %A Tongxing Li %T Oscillation Theorems for Second-Order Quasi-Linear Delay Dynamic Equations Delay Dynamic Equations %J Bulletin of the Malaysian Mathematical Society %D 2013 %V 36 %N 4 %U http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a5/ %F BMMS_2013_36_4_a5
Shuhong Tang; second Cunchen Gao; Tongxing Li. Oscillation Theorems for Second-Order Quasi-Linear Delay Dynamic Equations Delay Dynamic Equations. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a5/