On the 2-Absorbing Ideals in Commutative Rings
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $R$ be a commutative ring with identity. In this article, we study a generalization of prime ideal. A proper ideal $I$ of $R$ is called a 2-absorbing ideal if whenever $abc\in I$ for $a,b,c\in R$, then $ab\in I$ or $bc\in I$ or $ac\in I$. It is shown that if $I$ is a 2-absorbing ideal of a Noetherian ring $R$, then $R/I$ has some ideals $J_n$, where $1\leq n\leq t$ and $t$ is a positive integer, such that $J_n$ possesses a prime filtration $F_{J_n}:\ \ 0\subset R(x_1+I)\subset \bigotimes R(x_1+I)\ R(x_2+I)\subset\cdots \subset R(x_1+I) \bigotimes\ \cdots\ \bigotimes R(x_n+I)=J_n$ with $\ Ass_R(J_n)=\{ I:_Rx_i\ \ |\ \ i=1,... ,n\}$ and $|\ Ass_R(J_n)|=n$. Also, a 2-Absorbing Avoidance Theorem is proved
Classification : 13A15
@article{BMMS_2013_36_4_a3,
     author = {Sh. Payrovi and S. Babaei},
     title = {On the {2-Absorbing} {Ideals} in {Commutative} {Rings}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a3/}
}
TY  - JOUR
AU  - Sh. Payrovi
AU  - S. Babaei
TI  - On the 2-Absorbing Ideals in Commutative Rings
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a3/
ID  - BMMS_2013_36_4_a3
ER  - 
%0 Journal Article
%A Sh. Payrovi
%A S. Babaei
%T On the 2-Absorbing Ideals in Commutative Rings
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a3/
%F BMMS_2013_36_4_a3
Sh. Payrovi; S. Babaei. On the 2-Absorbing Ideals in Commutative Rings. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a3/