Positive Solution for Fractional $q$-Difference Boundary Value Problems with $\phi$-Laplacian Operator
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper, we investigate the existence of at least one positive solution for a class of fractional $q$-difference boundary value problems with $\phi$-Laplacian operator. The arguments mainly rely on the upper and lower solutions method as well as the Schauder's fixed point theorem. Nonlinear term may be singular at $t=0,1$ or $u=0$. Furthermore, two examples are presented to illustrate the main results.
Classification : 39A13, 34B18, 34A08
@article{BMMS_2013_36_4_a26,
     author = {Wengui Yang},
     title = {Positive {Solution} for {Fractional} $q${-Difference} {Boundary} {Value} {Problems} with $\phi${-Laplacian} {Operator}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a26/}
}
TY  - JOUR
AU  - Wengui Yang
TI  - Positive Solution for Fractional $q$-Difference Boundary Value Problems with $\phi$-Laplacian Operator
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a26/
ID  - BMMS_2013_36_4_a26
ER  - 
%0 Journal Article
%A Wengui Yang
%T Positive Solution for Fractional $q$-Difference Boundary Value Problems with $\phi$-Laplacian Operator
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a26/
%F BMMS_2013_36_4_a26
Wengui Yang. Positive Solution for Fractional $q$-Difference Boundary Value Problems with $\phi$-Laplacian Operator. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a26/