A Note on the Product of Element Orders of Finite Abelian Groups
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Given a finite group $G$, we denote by $\psi\,'(G)$ the product of element orders of $G$. Our main result proves that the restriction of $\psi\,'$ to abelian $p$-groups of order $p^n$ is strictly increasing with respect to a natural order on the groups relating to the lexicographic order of the partitions of $n$. In particular, we infer that two finite abelian groups of the same order are isomorphic if and only if they have the same product of element orders.
Classification : Primary 20K01; Secondary 20D60, 20D15
@article{BMMS_2013_36_4_a20,
     author = {Marius Tarnauceanu},
     title = {A {Note} on the {Product} of {Element} {Orders} of {Finite} {Abelian} {Groups}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a20/}
}
TY  - JOUR
AU  - Marius Tarnauceanu
TI  - A Note on the Product of Element Orders of Finite Abelian Groups
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a20/
ID  - BMMS_2013_36_4_a20
ER  - 
%0 Journal Article
%A Marius Tarnauceanu
%T A Note on the Product of Element Orders of Finite Abelian Groups
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a20/
%F BMMS_2013_36_4_a20
Marius Tarnauceanu. A Note on the Product of Element Orders of Finite Abelian Groups. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a20/