Convolution and Involution on Function Spaces of Homogeneous Spaces
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $G$ be a locally compact group and also let $H$ be a compact subgroup of $G$. It is shown that, if $\mu$ is a relatively invariant measure on $G/H$ then there is a well-defined convolution on $L^1(G/H,\mu)$ such that the Banach space $L^1(G/H,\mu)$ becomes a Banach algebra. We also find a generalized definition of this convolution for other $L^p$-spaces. Finally, we show that various types of involutions can be considered on $G/H$.
Classification :
43A15, 43A85
@article{BMMS_2013_36_4_a19,
author = {Arash Ghaani Farashahi},
title = {Convolution and {Involution} on {Function} {Spaces} of {Homogeneous} {Spaces}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {4},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a19/}
}
Arash Ghaani Farashahi. Convolution and Involution on Function Spaces of Homogeneous Spaces. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a19/