Metrizability of Rectifiable Spaces
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

A topological space $G$ is said to be a {\it rectifiable space} provided that there are a surjective homeomorphism $\varphi :G\times G\rightarrow G\times G$ and an element $e\in G$ such that $\pi_{1}\circ \varphi =\pi_{1}$ and for every $x\in G$ we have $\varphi (x, x)=(x, e)$, where $\pi_{1}: G\times G\rightarrow G$ is the projection to the first coordinate. In this paper, we firstly show that every submaximal rectifiable space $G$ either has a regular $G_{\delta}$-diagonal, or is a $P$-space. Then, we mainly discuss rectifiable spaces are determined by a point-countable cover, and show that if $G$ is an $\alpha_{4}$-rectifiable space determined by a point-countable cover $\mathscr{G}$ consisting of bisequential subspaces then it is metrizable, which generalizes a result of Lin and Shen's.
Classification : 54A25, 54B05, 54E20, 54E35
@article{BMMS_2013_36_4_a18,
     author = {Fucai Lin},
     title = {Metrizability of {Rectifiable} {Spaces}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a18/}
}
TY  - JOUR
AU  - Fucai Lin
TI  - Metrizability of Rectifiable Spaces
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a18/
ID  - BMMS_2013_36_4_a18
ER  - 
%0 Journal Article
%A Fucai Lin
%T Metrizability of Rectifiable Spaces
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a18/
%F BMMS_2013_36_4_a18
Fucai Lin. Metrizability of Rectifiable Spaces. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a18/