Generalized Derivations and Multilinear Polynomials in Prime Rings
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $R$ be a prime ring with Utumi quotient ring $U$ and extended centroid $C$, $g$ a nonzero generalized derivation of $R$, $I$ a nonzero right ideal of $R$, $f(r_1,\ldots,r_k)$ a multilinear polynomial over $C$ and $n\geq 2$ be a fixed integer. If $g(f(r_1,\ldots,r_k)^n)=g(f(r_1,\ldots,r_k))^n$ for all $r_1,\ldots,r_k\in I$, then one of the following holds: (1) $I C=eRC$ for some idempotent $e\in soc (RC)$ and $f(x_1,\ldots,x_k)$ is central-valued on $eRCe$; (2) there exist $a,b\in U$ such that $g(x)=ax+xb$ for all $x\in R$ and $(a-\alpha)I=(0)$, $(b-\beta)I=(0)$ for some $\alpha,\beta\in C$ with $(\alpha+\beta)^{n-1}=1$; (3) there exists $a\in U$ such that $g(x)=ax$ for all $x\in R$ with $aI=(0)$.
Classification :
16W25, 16R50, 16N60
@article{BMMS_2013_36_4_a16,
author = {Basudeb Dhara and Shuliang Huang and Atanu Pattanayak},
title = {Generalized {Derivations} and {Multilinear} {Polynomials} in {Prime} {Rings}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {4},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a16/}
}
TY - JOUR AU - Basudeb Dhara AU - Shuliang Huang AU - Atanu Pattanayak TI - Generalized Derivations and Multilinear Polynomials in Prime Rings JO - Bulletin of the Malaysian Mathematical Society PY - 2013 VL - 36 IS - 4 UR - http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a16/ ID - BMMS_2013_36_4_a16 ER -
Basudeb Dhara; Shuliang Huang; Atanu Pattanayak. Generalized Derivations and Multilinear Polynomials in Prime Rings. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a16/