Finite Groups with Some $\mathcal M$-Permutable Primary Subgroups
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $d$ be the smallest generator number of a finite $p$-group $P$ and $\mathcal M$$_d(P)=\{P_1,P_2,\cdots P_d\}$ be the set of maximal subgroups of $P$ such that $\bigcap_{i=1}^{d}P_i=\Phi(P)$. Then $P$ is called $\mathcal M$-permutable in a finite group $G$, if there exists a subgroup $B$ of $G$ such that $G=PB$ and $P_iB G $ for every $P_i$ of ${\mathcal M}_d(P)$.In this paper, we investigate the structure of finite groups by some $\mathcal M$-permutable subgroups of the Sylow $p$-subgroup. Some new results about $p$-supersolvable groups and $p$-nilpotent groups are obtained.
Classification :
Primary: 20D10,20D20
@article{BMMS_2013_36_4_a14,
author = {Hongwei Bao and Long Miao},
title = {Finite {Groups} with {Some} $\mathcal M${-Permutable} {Primary} {Subgroups}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {4},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a14/}
}
Hongwei Bao; Long Miao. Finite Groups with Some $\mathcal M$-Permutable Primary Subgroups. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a14/