Weighted Composition Operators from the Besov Spaces into the Bloch Spaces
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $\varphi$ be an analytic self-map of the open unit disk $\mathbb{D}$ in the complex plane $\mathbb{C}$ and let $u$ be a fixed analytic function on $\mathbb{D}$. The weighted composition operator is defined on the space $H(\mathbb{D})$ of analytic functions on $\mathbb{D}$ by $uC_\varphi f =u \cdot (f\circ \varphi), \ \ f \in H(\mathbb{D})$. In this work, we characterize the bounded and the compact weighted composition operators from the Besov spaces $B_{p}$ (1 $p$ >\infty) into the Bloch space as well as into the little Bloch space.
Classification :
Primary: 47B33, Secondary: 30H30
@article{BMMS_2013_36_4_a13,
author = {Flavia Colonna and Songxiao Li},
title = {Weighted {Composition} {Operators} from the {Besov} {Spaces} into the {Bloch} {Spaces}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {4},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a13/}
}
Flavia Colonna; Songxiao Li. Weighted Composition Operators from the Besov Spaces into the Bloch Spaces. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a13/