Existence of Homoclinic Travelling Waves in Infinite Lattices
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

By using critical point theory, we investigate the existence of homoclinic travelling waves in an one-dimensional infinite lattice with nearest-neighbor interactions and a on-site potential (density) $f$. The system is described by the infinite system of second-order differential equations:

$\ddot{q}_{j}+f'(q_{j}(t))=V'(q_{j+1}(t)-q_{j}(t))-V'(q_{j}(t)-q_{j-1}(t)), \quad t\in\mathbb{R}, \ j\in\mathbb{Z},$

where $f,V\in C^{1}(\mathbb{R},\mathbb{R})$. We establish three new criteria ensuring the existence of non-trivial homoclinic travelling wave solutions, for any given speed $c$ bigger (or smaller) than some constant depending on $f$ and $V$. Relevant results in the literatures are extended.
Classification : 37K60, 34C25, 34C37
@article{BMMS_2013_36_4_a10,
     author = {Zhisu Liu and Shangjiang Guo and Ziheng Zhang},
     title = {Existence of {Homoclinic} {Travelling} {Waves} in {Infinite} {Lattices}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a10/}
}
TY  - JOUR
AU  - Zhisu Liu
AU  - Shangjiang Guo
AU  - Ziheng Zhang
TI  - Existence of Homoclinic Travelling Waves in Infinite Lattices
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a10/
ID  - BMMS_2013_36_4_a10
ER  - 
%0 Journal Article
%A Zhisu Liu
%A Shangjiang Guo
%A Ziheng Zhang
%T Existence of Homoclinic Travelling Waves in Infinite Lattices
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a10/
%F BMMS_2013_36_4_a10
Zhisu Liu; Shangjiang Guo; Ziheng Zhang. Existence of Homoclinic Travelling Waves in Infinite Lattices. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2013_36_4_a10/