Multiple Results for Critical Quasilinear Elliptic Systems Involving Concave-Convex Nonlinearities and Sign-Changing Weight Functions
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
This paper is devoted to study the multiplicity of nontrivial nonnegative or positive solutions to the following systems \begin{eqnarray*}\label{iii} \left\{ \begin{array}{ll} -\triangle_p u=\lambda a_1(x)|u|^{q-2}u+b(x)F_u(u,v), \ \ \mbox{in}\ \ \Omega, \\ -\triangle_p v=\lambda a_2(x)|v|^{q-2}v+b(x)F_v(u,v), \ \ \mbox{in}\ \ \Omega,\\ u=v=0, \ \ \mbox{on}\ \ \partial\Omega, \end{array} \right. \end{eqnarray*} where $\Omega \subset R^{N}$ is a bounded domain with smooth boundary $\partial\Omega$; $1 q p N$, $p^{*}=\frac{Np}{N-p}$; $\triangle_{p} w=\mbox{div}(|\nabla w|^{p-2}\nabla w)$ denotes the $p$-Laplacian operator; $\lambda>0$ is a positive parameter; $a_i \in L^{\Theta}(\Omega)(i=1,\ 2)$ with $\Theta=\frac{p^{*}}{p^{*}-q}$ and $b\in L^{\infty}(\Omega)$ are allowed to change sign; $F\in C^{1}((R^+)^{2},R^+)$ is positively homogeneous of degree $p^{*}$, that is, $F(tz)=t^{p^{*}}F(z)$ holds for all $z\in (R^{+})^{2}$ and $t> 0 $, here, $R^{+}=[0,+\infty)$. The multiple results of weak solutions for the above critical quasilinear elliptic systems are obtained by using the Ekeland's variational principle and the mountain pass theorem.
Classification :
35J50, 35J55, 35J92
@article{BMMS_2013_36_3_a21,
author = {Chang-Mu Chu and Chun-Lei Tang},
title = {Multiple {Results} for {Critical} {Quasilinear} {Elliptic} {Systems} {Involving} {Concave-Convex} {Nonlinearities} and {Sign-Changing} {Weight} {Functions}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a21/}
}
TY - JOUR AU - Chang-Mu Chu AU - Chun-Lei Tang TI - Multiple Results for Critical Quasilinear Elliptic Systems Involving Concave-Convex Nonlinearities and Sign-Changing Weight Functions JO - Bulletin of the Malaysian Mathematical Society PY - 2013 VL - 36 IS - 3 UR - http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a21/ ID - BMMS_2013_36_3_a21 ER -
%0 Journal Article %A Chang-Mu Chu %A Chun-Lei Tang %T Multiple Results for Critical Quasilinear Elliptic Systems Involving Concave-Convex Nonlinearities and Sign-Changing Weight Functions %J Bulletin of the Malaysian Mathematical Society %D 2013 %V 36 %N 3 %U http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a21/ %F BMMS_2013_36_3_a21
Chang-Mu Chu; Chun-Lei Tang. Multiple Results for Critical Quasilinear Elliptic Systems Involving Concave-Convex Nonlinearities and Sign-Changing Weight Functions. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a21/