Pairwise $\omega \beta$-Continuous Functions
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

A subset $A$ of a bitopological space $(X,{\tau _1},{\tau _2})$ is said to be $ij- \omega \beta$-open if for every $x \in A$ there exists an $ij- \beta$-open set $U$ containing $x$ such that $U - A$ is countable. In this paper, we introduce and study a new class of functions called pairwise $\omega \beta$-continuous functions by using the notion of $ij- \omega \beta$-open sets, and we give some characterizations of pairwise $\omega \beta$-continuous functions. Also pairwise $\omega \beta $-connectedness and pairwise $\omega \beta$-set connected functions are introduced in bitopological spaces and some of their properties are established.
Classification : 54C05, 54C08, 54C10
@article{BMMS_2013_36_3_a2,
     author = {Heyam Hussein Aljarrah and Mohd Salmi Md Noorani and Takashi Noiri},
     title = {Pairwise $\omega \beta${-Continuous} {Functions}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a2/}
}
TY  - JOUR
AU  - Heyam Hussein Aljarrah
AU  - Mohd Salmi Md Noorani
AU  - Takashi Noiri
TI  - Pairwise $\omega \beta$-Continuous Functions
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a2/
ID  - BMMS_2013_36_3_a2
ER  - 
%0 Journal Article
%A Heyam Hussein Aljarrah
%A Mohd Salmi Md Noorani
%A Takashi Noiri
%T Pairwise $\omega \beta$-Continuous Functions
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a2/
%F BMMS_2013_36_3_a2
Heyam Hussein Aljarrah; Mohd Salmi Md Noorani; Takashi Noiri. Pairwise $\omega \beta$-Continuous Functions. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a2/