Existence and Multiplicity of Solutions for $p(x)$-Kirchhoff-Type Problem in $\mathbf{R}^N$
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper we study the $p(x)$-Kirchhoff-type problem \begin{equation*} \begin{cases} -m\left(\int_{\text{R}^N}\frac{1}{p(x)}|\nabla u|^{p(x)} dx\right) \text{div}(|\nabla u|^{p(x)-2}\nabla u)+|u|^{p(x)-2}u={f(x,u)}\quad \text{T}{in}\ \text{R}^N\\ u\in W^{1,p(x)}(\text{R}^N). \end{cases} \end{equation*} We first establish the compact imbedding $W^{1,p(x)}(\text{R}^N)\hookrightarrow L_{b(x)}^{q(x)}(\text{R}^N)$, where $L_{b(x)}^{p(x)}( \text{R}^N)=$$\{u$ is measurable on $\text{R}^N$:$\int_{\text{R}^N}b(x)|u|^{p(x)}dx\infty\}$. Based on it, the existence and multiplicity of solutions for the problem are obtained by variational methods.
Classification : 35J35, 35J60, 47J30, 58E05
@article{BMMS_2013_36_3_a19,
     author = {Mei-Chun Wei and Chun-Lei Tang},
     title = {Existence and {Multiplicity} of {Solutions} for $p(x)${-Kirchhoff-Type} {Problem} in $\mathbf{R}^N$},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a19/}
}
TY  - JOUR
AU  - Mei-Chun Wei
AU  - Chun-Lei Tang
TI  - Existence and Multiplicity of Solutions for $p(x)$-Kirchhoff-Type Problem in $\mathbf{R}^N$
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a19/
ID  - BMMS_2013_36_3_a19
ER  - 
%0 Journal Article
%A Mei-Chun Wei
%A Chun-Lei Tang
%T Existence and Multiplicity of Solutions for $p(x)$-Kirchhoff-Type Problem in $\mathbf{R}^N$
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a19/
%F BMMS_2013_36_3_a19
Mei-Chun Wei; Chun-Lei Tang. Existence and Multiplicity of Solutions for $p(x)$-Kirchhoff-Type Problem in $\mathbf{R}^N$. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a19/