A Note on $F$-Weak Multiplication Modules
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper the definition of an $F$-weak multiplication module is given and we prove some results for such a module. Then, using the definition of a semiprime submodule of a module, we characterize these submodules for $F$-weak multiplication modules. Finally, we show that any $F$-weak multiplication module satisfies the semi-radical formula.
Classification : 13C05, 13C13, 13E15, 13C99
@article{BMMS_2013_36_3_a18,
     author = {Hamid Agha Tavallaee and Mansoureh Mahtabi Oghani, and Robabeh Mahtabi Oghani},
     title = {A {Note} on $F${-Weak} {Multiplication} {Modules}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a18/}
}
TY  - JOUR
AU  - Hamid Agha Tavallaee
AU  - Mansoureh Mahtabi Oghani,
AU  - Robabeh Mahtabi Oghani
TI  - A Note on $F$-Weak Multiplication Modules
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a18/
ID  - BMMS_2013_36_3_a18
ER  - 
%0 Journal Article
%A Hamid Agha Tavallaee
%A Mansoureh Mahtabi Oghani,
%A Robabeh Mahtabi Oghani
%T A Note on $F$-Weak Multiplication Modules
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a18/
%F BMMS_2013_36_3_a18
Hamid Agha Tavallaee; Mansoureh Mahtabi Oghani,; Robabeh Mahtabi Oghani. A Note on $F$-Weak Multiplication Modules. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a18/