Two-Point Boundary Value Problems for Fractional Differential Equations at Resonance
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper, by using the coincidence degree theory, we consider the following two-point boundary value problem for fractional differential equation \begin{equation*} \begin{cases} D_{0^+}^{\alpha}x(t)=f(t, x(t), x'(t)), t\in [0,1], \\ x(0)=0,\ x'(0)=x'(1), \end{cases} \end{equation*} where $D_{0^+}^\alpha$ denotes the Caputo fractional differential operator of order $ \alpha $, $1 \alpha \leq 2$. A new result on the existence of solutions for above fractional boundary value problem is obtained.
Classification : 34A08, 34B15
@article{BMMS_2013_36_3_a17,
     author = {Zhigang Hu and Wenbin Liu and Taiyong Chen},
     title = {Two-Point {Boundary} {Value} {Problems} for {Fractional} {Differential} {Equations} at {Resonance}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a17/}
}
TY  - JOUR
AU  - Zhigang Hu
AU  - Wenbin Liu
AU  - Taiyong Chen
TI  - Two-Point Boundary Value Problems for Fractional Differential Equations at Resonance
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a17/
ID  - BMMS_2013_36_3_a17
ER  - 
%0 Journal Article
%A Zhigang Hu
%A Wenbin Liu
%A Taiyong Chen
%T Two-Point Boundary Value Problems for Fractional Differential Equations at Resonance
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a17/
%F BMMS_2013_36_3_a17
Zhigang Hu; Wenbin Liu; Taiyong Chen. Two-Point Boundary Value Problems for Fractional Differential Equations at Resonance. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a17/