On Newton-Like Method for Solving Generalized Nonlinear Operator Equations in Banach Spaces
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

The purpose of this paper is to prove existence and uniqueness theorem for solving an operator equation of the form $F(x)+G(x)=0$, where $F$ is a G\^{a}teaux differentiable operator and $G$ is a Lipschitzian operator defined on an open convex subset of a Banach space. Our result extends and improves the previously known results in recent literature.
Classification : 49M15, 65K10
@article{BMMS_2013_36_3_a15,
     author = {D. R. Sahu and Krishna Kumar Singh},
     title = {On {Newton-Like} {Method} for {Solving} {Generalized}  {Nonlinear} {Operator} {Equations} in {Banach} {Spaces}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a15/}
}
TY  - JOUR
AU  - D. R. Sahu
AU  - Krishna Kumar Singh
TI  - On Newton-Like Method for Solving Generalized  Nonlinear Operator Equations in Banach Spaces
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a15/
ID  - BMMS_2013_36_3_a15
ER  - 
%0 Journal Article
%A D. R. Sahu
%A Krishna Kumar Singh
%T On Newton-Like Method for Solving Generalized  Nonlinear Operator Equations in Banach Spaces
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a15/
%F BMMS_2013_36_3_a15
D. R. Sahu; Krishna Kumar Singh. On Newton-Like Method for Solving Generalized  Nonlinear Operator Equations in Banach Spaces. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a15/