On Newton-Like Method for Solving Generalized Nonlinear Operator Equations in Banach Spaces
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
The purpose of this paper is to prove existence and uniqueness theorem for solving an operator equation of the form $F(x)+G(x)=0$, where $F$ is a G\^{a}teaux differentiable operator and $G$ is a Lipschitzian operator defined on an open convex subset of a Banach space. Our result extends and improves the previously known results in recent literature.
Classification :
49M15, 65K10
@article{BMMS_2013_36_3_a15,
author = {D. R. Sahu and Krishna Kumar Singh},
title = {On {Newton-Like} {Method} for {Solving} {Generalized} {Nonlinear} {Operator} {Equations} in {Banach} {Spaces}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a15/}
}
TY - JOUR AU - D. R. Sahu AU - Krishna Kumar Singh TI - On Newton-Like Method for Solving Generalized Nonlinear Operator Equations in Banach Spaces JO - Bulletin of the Malaysian Mathematical Society PY - 2013 VL - 36 IS - 3 UR - http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a15/ ID - BMMS_2013_36_3_a15 ER -
D. R. Sahu; Krishna Kumar Singh. On Newton-Like Method for Solving Generalized Nonlinear Operator Equations in Banach Spaces. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a15/