On Maximally Irregular Graphs
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $G$ be a connected graph with maximum degree $\Delta(G)$. The {\it irregularity index} $t(G)$ of $G$ is defined as the number of distinct terms in the degree sequence of $G$. We say that $G$ is {\it maximally irregular} if $t(G)=\Delta(G)$. The purpose of this note, apart from pointing out that every highly irregular graph is maximally irregular, is to establish upper bounds on the size of maximally irregular graphs and maximally irregular triangle-free graphs.
Classification : 97K30
@article{BMMS_2013_36_3_a14,
     author = {Simon Mukwembi},
     title = {On {Maximally} {Irregular} {Graphs}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a14/}
}
TY  - JOUR
AU  - Simon Mukwembi
TI  - On Maximally Irregular Graphs
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a14/
ID  - BMMS_2013_36_3_a14
ER  - 
%0 Journal Article
%A Simon Mukwembi
%T On Maximally Irregular Graphs
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a14/
%F BMMS_2013_36_3_a14
Simon Mukwembi. On Maximally Irregular Graphs. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a14/