Central Automorphisms of Semidirect Products
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper we describe the structure of $\text{Aut}_N^Z(G)$ for a group $G=HK$, where $K$ is a normal subgroup of $G$ and $N= H \cap K$ is $\text{Aut}^Z(G)$-invariant, in particular, if N = 1, this amounts to a description of the central automorphism group of the semi-direct product $G=K\rtimes H$. We also show that if $N\trianglelefteq G$ and $\mathcal{C}_K(H/N)=N$, then $\text{Aut}^Z_N(G)$ is a split extension. Particular if $G$ is solvable, then $\text{Aut}_N^Z(G)$ is an abelian by abelian split extension. This description of the group of central automorphisms of semidirect products is of great importance, because any solvable group has a splitting quotient.
Classification : 20D15, 20D45
@article{BMMS_2013_36_3_a13,
     author = {Hamid Mousavi and Amir Shomali},
     title = {Central {Automorphisms} of {Semidirect} {Products}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a13/}
}
TY  - JOUR
AU  - Hamid Mousavi
AU  - Amir Shomali
TI  - Central Automorphisms of Semidirect Products
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a13/
ID  - BMMS_2013_36_3_a13
ER  - 
%0 Journal Article
%A Hamid Mousavi
%A Amir Shomali
%T Central Automorphisms of Semidirect Products
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a13/
%F BMMS_2013_36_3_a13
Hamid Mousavi; Amir Shomali. Central Automorphisms of Semidirect Products. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2013_36_3_a13/