Weyl's Type Theorem and a Local Growth Condition
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

A bounded linear operator $T\in\mathbf{L(\mathbb{X})}$ acting on a Banach space satisfies a local growth condition of order $m$ for some positive integer $m,$ $T\in \text{loc}(G_m)$, if for every closed subset $F$ of the set of complex numbers and every $x$ in the glocal spectral subspace $\mathbb{X}_T (F)$ there exists an analytic function $f:\mathbb{C}\setminus F\rightarrow \mathbb{X}$ such that $(T-\lambda I)f(\lambda)\equiv x$ and $\left\Vert{f(\lambda)}\right\Vert\leq M\left[\text{dist}(\lambda,F)\right]^{-m}\left\Vert{x}\right\Vert$ for some $M>0$ (independent of $F$ and $x$). In this paper, we study the stability of generalized Browder-Weyl theorems under perturbations by finite rank operators, by nilpotent operators and, more generally, by algebraic and Riesz operators commuting with $T$.
Classification : Primary 47A53, 47A55; Secondary 47A10, 47A11, 47A20
@article{BMMS_2013_36_2_a7,
     author = {M. H. M. Rashid},
     title = {Weyl's {Type} {Theorem} and a {Local} {Growth} {Condition}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a7/}
}
TY  - JOUR
AU  - M. H. M. Rashid
TI  - Weyl's Type Theorem and a Local Growth Condition
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a7/
ID  - BMMS_2013_36_2_a7
ER  - 
%0 Journal Article
%A M. H. M. Rashid
%T Weyl's Type Theorem and a Local Growth Condition
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a7/
%F BMMS_2013_36_2_a7
M. H. M. Rashid. Weyl's Type Theorem and a Local Growth Condition. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a7/