Growth Property and Integral Representation of Harmonic Functions in a Cone
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Our aim in this paper is to deal with the growth property at infinity for modified Poisson integrals in an $n$-dimensional cone. We also generalize the integral representation of harmonic functions in a half space of ${\bf R}^{n} (n\geq2)$ to the conical case.
Classification :
31B10, 31C05
@article{BMMS_2013_36_2_a22,
author = {Lei Qiao and Guan-Tie Deng},
title = {Growth {Property} and {Integral} {Representation} of {Harmonic} {Functions} in a {Cone}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a22/}
}
Lei Qiao; Guan-Tie Deng. Growth Property and Integral Representation of Harmonic Functions in a Cone. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a22/