Growth Property and Integral Representation of Harmonic Functions in a Cone
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Our aim in this paper is to deal with the growth property at infinity for modified Poisson integrals in an $n$-dimensional cone. We also generalize the integral representation of harmonic functions in a half space of ${\bf R}^{n} (n\geq2)$ to the conical case.
Classification : 31B10, 31C05
@article{BMMS_2013_36_2_a22,
     author = {Lei Qiao and Guan-Tie Deng},
     title = {Growth {Property} and {Integral} {Representation} of {Harmonic} {Functions} in a {Cone}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a22/}
}
TY  - JOUR
AU  - Lei Qiao
AU  - Guan-Tie Deng
TI  - Growth Property and Integral Representation of Harmonic Functions in a Cone
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a22/
ID  - BMMS_2013_36_2_a22
ER  - 
%0 Journal Article
%A Lei Qiao
%A Guan-Tie Deng
%T Growth Property and Integral Representation of Harmonic Functions in a Cone
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a22/
%F BMMS_2013_36_2_a22
Lei Qiao; Guan-Tie Deng. Growth Property and Integral Representation of Harmonic Functions in a Cone. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a22/