The Linear Arboricity of Planar Graphs without 5-Cycles with Chords
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

The linear arboricity $la(G)$ of a graph $G$ is the minimum number of linear forests which partition the edges of $G$. In this paper, it is proved that for a planar graph $G$ with maximum degree $\Delta(G)\geq7$, $la(G)=\lceil\frac{\Delta(G)}{2}\rceil$ if $G$ has no 5-cycles with chords.
Classification : 05C15
@article{BMMS_2013_36_2_a2,
     author = {Hong-Yu Chen and Xiang Tan and Jian-Liang Wu},
     title = {The {Linear} {Arboricity} of {Planar} {Graphs} without {5-Cycles} with {Chords}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a2/}
}
TY  - JOUR
AU  - Hong-Yu Chen
AU  - Xiang Tan
AU  - Jian-Liang Wu
TI  - The Linear Arboricity of Planar Graphs without 5-Cycles with Chords
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a2/
ID  - BMMS_2013_36_2_a2
ER  - 
%0 Journal Article
%A Hong-Yu Chen
%A Xiang Tan
%A Jian-Liang Wu
%T The Linear Arboricity of Planar Graphs without 5-Cycles with Chords
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a2/
%F BMMS_2013_36_2_a2
Hong-Yu Chen; Xiang Tan; Jian-Liang Wu. The Linear Arboricity of Planar Graphs without 5-Cycles with Chords. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a2/