Some Results for the Apostol-Genocchi Polynomials of Higher Order
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

The present paper deals with multiplication formulas for the Apostol-Genocchi polynomials of higher order and deduces some explicit recursive formulas. Some earlier results of Carlitz and Howard in terms of Genocchi numbers can be deduced. We introduce the 2-variable Apostol-Genocchi polynomials and then we consider the multiplication theorem for 2-variable Genocchi polynomials. Also we introduce generalized Apostol-Genocchi polynomials with $a,b,c$ parameters and we obtain several identities on generalized Apostol-Genocchi polynomials with $a,b,c$ parameters.
Classification : 11B68, 05A10, 05A15
@article{BMMS_2013_36_2_a18,
     author = {Hassan Jolany and Hesam Sharifi and R. Eizadi Alikelaye},
     title = {Some {Results} for the {Apostol-Genocchi} {Polynomials} of {Higher} {Order}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a18/}
}
TY  - JOUR
AU  - Hassan Jolany
AU  - Hesam Sharifi
AU  - R. Eizadi Alikelaye
TI  - Some Results for the Apostol-Genocchi Polynomials of Higher Order
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a18/
ID  - BMMS_2013_36_2_a18
ER  - 
%0 Journal Article
%A Hassan Jolany
%A Hesam Sharifi
%A R. Eizadi Alikelaye
%T Some Results for the Apostol-Genocchi Polynomials of Higher Order
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a18/
%F BMMS_2013_36_2_a18
Hassan Jolany; Hesam Sharifi; R. Eizadi Alikelaye. Some Results for the Apostol-Genocchi Polynomials of Higher Order. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a18/