$(a,b,c)$-Koszul Algebras
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Given fixed integers $a,\;b$ and $c$ with $a>c>b>1$, the notion of {\it $(a,b,c)$-Koszul algebra} is introduced, which is another extension of Koszul algebras and includes some Artin-Schelter regular algebras of global dimension five as special examples. Some criteria for a standard graded algebra to be $(a,b,c)$-Koszul are given. Further, the Yoneda algebras and the $H$-Galois graded extensions of $(a,b,c)$-Koszul algebras are discussed, where $H$ is a finite dimensional semisimple and cosemisimple Hopf algebra. Moreover, the so-called {\it (generalized) $(a,b,c)$-Koszul modules} are introduced and some basic properties are also provided.
Classification :
Primary 16S37, 16W50; Secondary 16E30, 16E40
@article{BMMS_2013_36_2_a17,
author = {Jia-Feng L\"u},
title = {$(a,b,c)${-Koszul} {Algebras}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a17/}
}
Jia-Feng Lü. $(a,b,c)$-Koszul Algebras. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a17/