Existence of Solutions for Weighted $p(t)$-Laplacian Impulsive Integro-Differential System with Integral Boundary Value Conditions
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

This paper investigates the existence of solutions for weighted $p(t)$-Laplacian impulsive integro-differential system with integral boundary value conditions via Leray-Schauder's degree, the sufficient conditions for the existence of solutions be given. Moreover, we get the existence of nonnegative solutions.
Classification : 34B37
@article{BMMS_2013_36_2_a15,
     author = {Rong Dong and Yunrui Guo and Qihu Zhang},
     title = {Existence of {Solutions} for {Weighted} $p(t)${-Laplacian} {Impulsive} {Integro-Differential} {System} with {Integral} {Boundary} {Value} {Conditions}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a15/}
}
TY  - JOUR
AU  - Rong Dong
AU  - Yunrui Guo
AU  - Qihu Zhang
TI  - Existence of Solutions for Weighted $p(t)$-Laplacian Impulsive Integro-Differential System with Integral Boundary Value Conditions
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a15/
ID  - BMMS_2013_36_2_a15
ER  - 
%0 Journal Article
%A Rong Dong
%A Yunrui Guo
%A Qihu Zhang
%T Existence of Solutions for Weighted $p(t)$-Laplacian Impulsive Integro-Differential System with Integral Boundary Value Conditions
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a15/
%F BMMS_2013_36_2_a15
Rong Dong; Yunrui Guo; Qihu Zhang. Existence of Solutions for Weighted $p(t)$-Laplacian Impulsive Integro-Differential System with Integral Boundary Value Conditions. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a15/