Global Signed Domination in Graphs
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
A function $f:V(G)\rightarrow \{-1,1\}$ defined on the vertices of a graph $G$ is a signed dominating function (SDF) if the sum of its function values over any closed neighborhood is at least one. A SDF $f:V(G)\rightarrow \{-1,1\}$ is called a global signed dominating function (GSDF) if $f$ is also a SDF of the complement $\overline{G}$ of $G$. The global signed domination number $\gamma_{gs}(G)$ of $G$ is defined as $\gamma_{gs}(G)=\min\{\sum_{v\in V(G)} f(v)\mid f \mbox{ is a GSDF of } G\}$. In this paper we study this parameter and pose some open problems.
Classification :
05C69, 05C05
@article{BMMS_2013_36_2_a10,
author = {H. Karami and R. Khoeilar and S. M. Sheikholeslami and Abdollah Khodkar},
title = {Global {Signed} {Domination} in {Graphs}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a10/}
}
H. Karami; R. Khoeilar; S. M. Sheikholeslami; Abdollah Khodkar. Global Signed Domination in Graphs. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a10/