Global Signed Domination in Graphs
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

A function $f:V(G)\rightarrow \{-1,1\}$ defined on the vertices of a graph $G$ is a signed dominating function (SDF) if the sum of its function values over any closed neighborhood is at least one. A SDF $f:V(G)\rightarrow \{-1,1\}$ is called a global signed dominating function (GSDF) if $f$ is also a SDF of the complement $\overline{G}$ of $G$. The global signed domination number $\gamma_{gs}(G)$ of $G$ is defined as $\gamma_{gs}(G)=\min\{\sum_{v\in V(G)} f(v)\mid f \mbox{ is a GSDF of } G\}$. In this paper we study this parameter and pose some open problems.
Classification : 05C69, 05C05
@article{BMMS_2013_36_2_a10,
     author = {H. Karami and R. Khoeilar and S. M. Sheikholeslami and Abdollah Khodkar},
     title = {Global {Signed} {Domination} in {Graphs}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a10/}
}
TY  - JOUR
AU  - H. Karami
AU  - R. Khoeilar
AU  - S. M. Sheikholeslami
AU  - Abdollah Khodkar
TI  - Global Signed Domination in Graphs
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a10/
ID  - BMMS_2013_36_2_a10
ER  - 
%0 Journal Article
%A H. Karami
%A R. Khoeilar
%A S. M. Sheikholeslami
%A Abdollah Khodkar
%T Global Signed Domination in Graphs
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a10/
%F BMMS_2013_36_2_a10
H. Karami; R. Khoeilar; S. M. Sheikholeslami; Abdollah Khodkar. Global Signed Domination in Graphs. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a10/