Optimal Inequalities, Contact $\delta$-Invariants and Their Applications
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Associated with a $k$-tuple $(n_1,\ldots,n_k)\in \mathcal S(2n+1)$ with $n\geq 1$, we define a contact $\delta$-invariant, $\delta^c(n_1,\ldots,n_k)$, on an almost contact metric $(2n+1)$-manifold $M$. For an arbitrary isometric immersion of $M$ into a Riemannian manifold, we establish an optimal inequality involving $\delta^c(n_1,\ldots,n_k)$ and the squared mean curvature of the immersion. Furthermore, we investigate isometric immersions of contact metric and $K$-contact manifolds into Riemannian space forms which verify the equality case of the inequality for some $k$-tuple.
Classification :
51M16, 53C40, 53C25, 53D15
@article{BMMS_2013_36_2_a0,
author = {Bang-Yen Chen and Veronica Martin-Molina},
title = {Optimal {Inequalities,} {Contact} $\delta${-Invariants} and {Their} {Applications}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a0/}
}
Bang-Yen Chen; Veronica Martin-Molina. Optimal Inequalities, Contact $\delta$-Invariants and Their Applications. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2013_36_2_a0/