Linear Preservers of Extremes of Matrix Pairs Over Nonbinary Boolean Algebra
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
The $m\times n$ Boolean matrix $A$ is said to be of Boolean rank $r$ if there exist $m\times r$ Boolean matrix $B$ and $r\times m$ Boolean matrix $C$ such that $A = BC$ and $r$ is the smallest positive integer that such a factorization exists. We characterize linear operators that preserve the sets of matrix ordered pairs which satisfy extremal properties with respect to Boolean rank inequalities of matrices over nonbinary Boolean algebras.
Classification :
15A86, 15A03, 15B34
@article{BMMS_2013_36_1_a6,
author = {Seok-Zun Song and Mun-Hwan Kang},
title = {Linear {Preservers} of {Extremes} of {Matrix} {Pairs} {Over} {Nonbinary} {Boolean} {Algebra}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a6/}
}
Seok-Zun Song; Mun-Hwan Kang. Linear Preservers of Extremes of Matrix Pairs Over Nonbinary Boolean Algebra. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a6/