On the Total $\{k\}$-Domination and Total $\{k\}$-Domatic Number of Graphs
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
For a positive integer $k$, a {\em total $\{k\}$-dominating function} of a graph $G$ without isolated vertices is a function $f$ from the vertex set $V(G)$ to the set $\{0,1,2,\ldots,k\}$ such that for any vertex $v\in V(G)$, the condition $\sum_{u\in N(v)}f(u)\ge k$ is fulfilled, where $N(v)$ is the open neighborhood of $v$. The {\em weight} of a total $\{k\}$-dominating function $f$ is the value $\omega(f)=\sum_{v\in V}f (v)$. The {\em total $\{k\}$-domination number}, denoted by $\gamma_t^{\{k\}}(G)$, is the minimum weight of a total $\{k\}$-dominating function on $G$. A set $\{f_1,f_2,\ldots,f_d\}$ of total $\{k\}$-dominating functions on $G$ with the property that $\sum_{i=1}^df_i(v)\le k$ for each $v\in V(G)$, is called a {\em total $\{k\}$-dominating family} (of functions) on $G$. The maximum number of functions in a total $\{k\}$-dominating family on $G$ is the {\em total $\{k\}$-domatic number} of $G$, denoted by $d_t^{\{k\}}(G)$. Note that $d_t^{\{1\}}(G)$ is the classic total domatic number $d_t(G)$. In this paper, we present bounds for the total $\{k\}$-domination number and total $\{k\}$-domatic number. In addition, we determine the total $\{k\}$-domatic number of cylinders and we give a Nordhaus-Gaddum type result.
Classification :
05C69
@article{BMMS_2013_36_1_a3,
author = {H. Aram and S. M. Sheikholeslami and L. Volkmann},
title = {On the {Total} $\{k\}${-Domination} and {Total} $\{k\}${-Domatic} {Number} of {Graphs}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a3/}
}
TY - JOUR
AU - H. Aram
AU - S. M. Sheikholeslami
AU - L. Volkmann
TI - On the Total $\{k\}$-Domination and Total $\{k\}$-Domatic Number of Graphs
JO - Bulletin of the Malaysian Mathematical Society
PY - 2013
VL - 36
IS - 1
UR - http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a3/
ID - BMMS_2013_36_1_a3
ER -
H. Aram; S. M. Sheikholeslami; L. Volkmann. On the Total $\{k\}$-Domination and Total $\{k\}$-Domatic Number of Graphs. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a3/