Vertex-Disjoint Cycles of Order Eight with Chords in a Bipartite Graph
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $G=(V_{1},V_{2};E)$ be a bipartite graph with $\mid V_{1} \mid = \mid V_{2} \mid = 4k$, where $k$ is a positive integer. In this paper, it is proved that if the minimum degree of $G$ is at least $3k+1$, then $G$ contains $k$ vertex-disjoint cycles of order eight such that each of them has at least two chords.
Classification :
05C38, 05C70
@article{BMMS_2013_36_1_a23,
author = {Qingsong Zou and Hongyu Chen and Guojun Li},
title = {Vertex-Disjoint {Cycles} of {Order} {Eight} with {Chords} in a {Bipartite} {Graph}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a23/}
}
Qingsong Zou; Hongyu Chen; Guojun Li. Vertex-Disjoint Cycles of Order Eight with Chords in a Bipartite Graph. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a23/