Vertex-Disjoint Cycles of Order Eight with Chords in a Bipartite Graph
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $G=(V_{1},V_{2};E)$ be a bipartite graph with $\mid V_{1} \mid = \mid V_{2} \mid = 4k$, where $k$ is a positive integer. In this paper, it is proved that if the minimum degree of $G$ is at least $3k+1$, then $G$ contains $k$ vertex-disjoint cycles of order eight such that each of them has at least two chords.
Classification : 05C38, 05C70
@article{BMMS_2013_36_1_a23,
     author = {Qingsong Zou and Hongyu Chen and Guojun Li},
     title = {Vertex-Disjoint {Cycles} of {Order} {Eight} with {Chords} in a {Bipartite} {Graph}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a23/}
}
TY  - JOUR
AU  - Qingsong Zou
AU  - Hongyu Chen
AU  - Guojun Li
TI  - Vertex-Disjoint Cycles of Order Eight with Chords in a Bipartite Graph
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a23/
ID  - BMMS_2013_36_1_a23
ER  - 
%0 Journal Article
%A Qingsong Zou
%A Hongyu Chen
%A Guojun Li
%T Vertex-Disjoint Cycles of Order Eight with Chords in a Bipartite Graph
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a23/
%F BMMS_2013_36_1_a23
Qingsong Zou; Hongyu Chen; Guojun Li. Vertex-Disjoint Cycles of Order Eight with Chords in a Bipartite Graph. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a23/