Convergence Ball Analysis of a Modified Newton's Method Under Hölder Continuous Condition in Banach Space
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
A modified Newton's method which computes derivatives every other step is used to solve a nonlinear operator equation. An estimate of the radius of its convergence ball is obtained under Hölder continuous Fréchet derivatives in Banach space. An error analysis is given which matches its convergence order.
Classification :
65B05, 47817, 49D15
@article{BMMS_2013_36_1_a22,
author = {Qingbiao Wu and Hongmin Ren},
title = {Convergence {Ball} {Analysis} of a {Modified} {Newton's} {Method} {Under} {H\"older} {Continuous} {Condition} in {Banach} {Space}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a22/}
}
TY - JOUR AU - Qingbiao Wu AU - Hongmin Ren TI - Convergence Ball Analysis of a Modified Newton's Method Under Hölder Continuous Condition in Banach Space JO - Bulletin of the Malaysian Mathematical Society PY - 2013 VL - 36 IS - 1 UR - http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a22/ ID - BMMS_2013_36_1_a22 ER -
%0 Journal Article %A Qingbiao Wu %A Hongmin Ren %T Convergence Ball Analysis of a Modified Newton's Method Under Hölder Continuous Condition in Banach Space %J Bulletin of the Malaysian Mathematical Society %D 2013 %V 36 %N 1 %U http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a22/ %F BMMS_2013_36_1_a22
Qingbiao Wu; Hongmin Ren. Convergence Ball Analysis of a Modified Newton's Method Under Hölder Continuous Condition in Banach Space. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a22/