A Degenerate and Singular Parabolic System Coupled Through Boundary Conditions
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

The paper deals with the global existence and nonexistence for degenerate and singular parabolic system with nonlinear boundary condition. By using the comparison principle and constructing the self-similar super-solution and sub-solution, we obtain the critical global existence curve. The critical curve of Fujita type is conjectured with the aid of some new results. An interesting feature of our results is that the critical global existence curve and the critical Fujita curve are determined by a matrix and by the solution of a linear algebraic system, respectively.
Classification : 35K55, 35K65, 35B40
@article{BMMS_2013_36_1_a21,
     author = {Yong-Sheng Mi and Chun-Lai Mu and Shou-Ming Zhou},
     title = {A {Degenerate} and {Singular} {Parabolic} {System} {Coupled} {Through} {Boundary} {Conditions}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a21/}
}
TY  - JOUR
AU  - Yong-Sheng Mi
AU  - Chun-Lai Mu
AU  - Shou-Ming Zhou
TI  - A Degenerate and Singular Parabolic System Coupled Through Boundary Conditions
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a21/
ID  - BMMS_2013_36_1_a21
ER  - 
%0 Journal Article
%A Yong-Sheng Mi
%A Chun-Lai Mu
%A Shou-Ming Zhou
%T A Degenerate and Singular Parabolic System Coupled Through Boundary Conditions
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a21/
%F BMMS_2013_36_1_a21
Yong-Sheng Mi; Chun-Lai Mu; Shou-Ming Zhou. A Degenerate and Singular Parabolic System Coupled Through Boundary Conditions. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a21/