Unbounded Weighted Radon Measures and Dual of Certain Function Spaces with Strict Topology
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $X$ be a $C$-distinguished topological space, and let $\omega$ be a weight function on $X$. Denote by $C_b(X, \omega)$ the space of all real-valued functions $f$ with $f/\omega\in C_b(X)$, and by $\widetilde{C}_b(X, \omega)$ the space of all real-valued continuous functions $f$ such that $f/\omega$ is bounded. We introduce certain locally convex topologies on $C_b(X, \omega)$ and $\widetilde{C}_b(X, \omega)$, and as our main results we determine their duals.
Classification :
Primary 46E10, 46E27 Secondary: 46A03, 46A40
@article{BMMS_2013_36_1_a19,
author = {S. Maghsoudi and A. Rejali},
title = {Unbounded {Weighted} {Radon} {Measures} and {Dual} of {Certain} {Function} {Spaces} with {Strict} {Topology}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a19/}
}
TY - JOUR AU - S. Maghsoudi AU - A. Rejali TI - Unbounded Weighted Radon Measures and Dual of Certain Function Spaces with Strict Topology JO - Bulletin of the Malaysian Mathematical Society PY - 2013 VL - 36 IS - 1 UR - http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a19/ ID - BMMS_2013_36_1_a19 ER -
S. Maghsoudi; A. Rejali. Unbounded Weighted Radon Measures and Dual of Certain Function Spaces with Strict Topology. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a19/