Unbounded Weighted Radon Measures and Dual of Certain Function Spaces with Strict Topology
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $X$ be a $C$-distinguished topological space, and let $\omega$ be a weight function on $X$. Denote by $C_b(X, \omega)$ the space of all real-valued functions $f$ with $f/\omega\in C_b(X)$, and by $\widetilde{C}_b(X, \omega)$ the space of all real-valued continuous functions $f$ such that $f/\omega$ is bounded. We introduce certain locally convex topologies on $C_b(X, \omega)$ and $\widetilde{C}_b(X, \omega)$, and as our main results we determine their duals.
Classification : Primary 46E10, 46E27 Secondary: 46A03, 46A40
@article{BMMS_2013_36_1_a19,
     author = {S. Maghsoudi and A. Rejali},
     title = {Unbounded {Weighted} {Radon} {Measures} and {Dual} of {Certain} {Function} {Spaces} with {Strict} {Topology}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a19/}
}
TY  - JOUR
AU  - S. Maghsoudi
AU  - A. Rejali
TI  - Unbounded Weighted Radon Measures and Dual of Certain Function Spaces with Strict Topology
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a19/
ID  - BMMS_2013_36_1_a19
ER  - 
%0 Journal Article
%A S. Maghsoudi
%A A. Rejali
%T Unbounded Weighted Radon Measures and Dual of Certain Function Spaces with Strict Topology
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a19/
%F BMMS_2013_36_1_a19
S. Maghsoudi; A. Rejali. Unbounded Weighted Radon Measures and Dual of Certain Function Spaces with Strict Topology. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a19/