Combinatorial Results for Certain Semigroups of Transformations Preserving Orientation and a Uniform Partition
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let ${\mathcal T}_X$ be the full transformation semigroup on a set $X$ and $E$ be a non-trivial equivalence on $X$. The set
is a subsemigroup of ${\mathcal T}_ X $. For a finite totally ordered set $X$ and a convex equivalence $E$ on $X$, the set of all the orientation-preserving transformations in $T_E(X)$ forms a subsemigroup of $T_E(X)$ denoted by $OP_E(X)$. In this paper, under the hypothesis that the totally ordered set $X$ is of cardinality $mn\,\,(m,n\geq 2)$ and the equivalence $E$ has $m$ classes such that each $E$-class contains $n$ consecutive points, we calculate the cardinality of the semigroup $OP_E(X)$, and that of its idempotents.
| $T_E (X) =\{ f\in {\mathcal T}_X : \forall \, (x,y)\in E,\, (f(x),f(y))\in E \}$ |
Classification :
20M20, 05A10
@article{BMMS_2013_36_1_a17,
author = {Lei Sun},
title = {Combinatorial {Results} for {Certain} {Semigroups} of {Transformations} {Preserving} {Orientation} and a {Uniform} {Partition}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a17/}
}
TY - JOUR AU - Lei Sun TI - Combinatorial Results for Certain Semigroups of Transformations Preserving Orientation and a Uniform Partition JO - Bulletin of the Malaysian Mathematical Society PY - 2013 VL - 36 IS - 1 UR - http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a17/ ID - BMMS_2013_36_1_a17 ER -
Lei Sun. Combinatorial Results for Certain Semigroups of Transformations Preserving Orientation and a Uniform Partition. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a17/