Completely Continuous Linear Maps on Semigroup Algebra
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
For a locally compact group $G$, $L^1(G)$ is its group algebra and $L^\infty(G)$ is the dual of $L^1(G)$. Crombez and Govaerts introduced the notion of a uniformly measurable function in $L^\infty(G)$ and proved that such a function induces a completely continuous operator. The aim of this paper is to go further and generalize the above results to foundation semigroup algebras. We study completely continuous linear maps on semigroup algebras which commute with translations.
Classification :
Primary: 43A22; Secondary: 43A60
@article{BMMS_2013_36_1_a13,
author = {Ali Ghaffari},
title = {Completely {Continuous} {Linear} {Maps} on {Semigroup} {Algebra}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a13/}
}
Ali Ghaffari. Completely Continuous Linear Maps on Semigroup Algebra. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a13/