Multiplicity of Solutions for a Nonlinear Degenerate Problem in Anisotropic Variable Exponent Spaces
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

We study a nonlinear elliptic problem with Dirichlet boundary condition involving an anisotropic operator with variable exponents on a smooth bounded domain $\Omega\subset \mathbb R^N$. For that equation we prove the existence of at least two nonnegative and nontrivial weak solutions. Our main result is proved using as main tools the Mountain Pass Theorem and a direct method in Calculus of Variation.
Classification : 35J60, 35J70, 46E30
@article{BMMS_2013_36_1_a10,
     author = {Denisa Stancu-Dumitru},
     title = {Multiplicity of {Solutions} for a {Nonlinear} {Degenerate} {Problem} in {Anisotropic} {Variable} {Exponent} {Spaces}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2013},
     volume = {36},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a10/}
}
TY  - JOUR
AU  - Denisa Stancu-Dumitru
TI  - Multiplicity of Solutions for a Nonlinear Degenerate Problem in Anisotropic Variable Exponent Spaces
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2013
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a10/
ID  - BMMS_2013_36_1_a10
ER  - 
%0 Journal Article
%A Denisa Stancu-Dumitru
%T Multiplicity of Solutions for a Nonlinear Degenerate Problem in Anisotropic Variable Exponent Spaces
%J Bulletin of the Malaysian Mathematical Society
%D 2013
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a10/
%F BMMS_2013_36_1_a10
Denisa Stancu-Dumitru. Multiplicity of Solutions for a Nonlinear Degenerate Problem in Anisotropic Variable Exponent Spaces. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a10/