Multiplicity of Solutions for a Nonlinear Degenerate Problem in Anisotropic Variable Exponent Spaces
Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
We study a nonlinear elliptic problem with Dirichlet boundary condition involving an anisotropic operator with variable exponents on a smooth bounded domain $\Omega\subset \mathbb R^N$. For that equation we prove the existence of at least two nonnegative and nontrivial weak solutions. Our main result is proved using as main tools the Mountain Pass Theorem and a direct method in Calculus of Variation.
Classification :
35J60, 35J70, 46E30
@article{BMMS_2013_36_1_a10,
author = {Denisa Stancu-Dumitru},
title = {Multiplicity of {Solutions} for a {Nonlinear} {Degenerate} {Problem} in {Anisotropic} {Variable} {Exponent} {Spaces}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2013},
volume = {36},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a10/}
}
TY - JOUR AU - Denisa Stancu-Dumitru TI - Multiplicity of Solutions for a Nonlinear Degenerate Problem in Anisotropic Variable Exponent Spaces JO - Bulletin of the Malaysian Mathematical Society PY - 2013 VL - 36 IS - 1 UR - http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a10/ ID - BMMS_2013_36_1_a10 ER -
Denisa Stancu-Dumitru. Multiplicity of Solutions for a Nonlinear Degenerate Problem in Anisotropic Variable Exponent Spaces. Bulletin of the Malaysian Mathematical Society, Tome 36 (2013) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2013_36_1_a10/