On the Cozero-Divisor Graphs of Commutative Rings and Their Complements
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 4 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $R$ be a commutative ring with non-zero identity. The cozero-divisor graph of $R$, denoted by $\Gamma'(R)$, is a graph with vertices in $W^*(R)$, which is the set of all non-zero and non-unit elements of $R$, and two distinct vertices $a$ and $b$ in $W^*(R)$ are adjacent if and only if $a\notin bR$ and $b\notin aR$. In this paper, we characterize all commutative rings whose cozero-divisor graphs are forest, star, double-star or unicyclic.
Classification : 05C69, 05C75, 13A15.
@article{BMMS_2012_35_4_a9,
     author = {Mojgan Afkhami and Kazem Khashyarmanesh},
     title = {On the {Cozero-Divisor} {Graphs} of {Commutative} {Rings} and {Their} {Complements}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a9/}
}
TY  - JOUR
AU  - Mojgan Afkhami
AU  - Kazem Khashyarmanesh
TI  - On the Cozero-Divisor Graphs of Commutative Rings and Their Complements
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a9/
ID  - BMMS_2012_35_4_a9
ER  - 
%0 Journal Article
%A Mojgan Afkhami
%A Kazem Khashyarmanesh
%T On the Cozero-Divisor Graphs of Commutative Rings and Their Complements
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 4
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a9/
%F BMMS_2012_35_4_a9
Mojgan Afkhami; Kazem Khashyarmanesh. On the Cozero-Divisor Graphs of Commutative Rings and Their Complements. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a9/