Artinianness of Local Cohomology Modules Defined by a Pair of Ideals
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 4
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $R$ be a commutative Noetherian ring and $I$, $J$ two ideals of $R$. Let $M$ be a finitely generated $R$-module; it is shown that (1) if $\dim R/(I+J)=0$, then $H^{i}_{I,J}(M)/{JH^{i}_{I,J}(M)}$ is $I$-cofinite Artinian for all $i\geq 0$; let $\dim_{R} M/JM=d$ (2) if $R$ is local and $S$ is a non-zero Serre subcategory of the category of $R$-modules satisfying the condition $C_I$, then $H^{d}_{I,J}(M)/$ ${JH^{d}_{I,J}(M)}\in S$ (3) if $M$ has finite Krull dimension, then $H^{d+1}_{I,J}(M)/{JH^{d+1}_{I,J}(M)}=0$. Furthermore, notion of $(I,J)$-relative Goldie dimension of modules is defined and it is shown that $H^{n}_{I,J}(M)/{JH^{n}_{I,J}(M)}$ is Artinian, whenever $M$ is a $ZD$-module of dimension $n$ such that the $(I,J)$-relative Goldie dimension of any quotient of $M$ is finite.
Classification :
13D45, 14B15, 13E10.
@article{BMMS_2012_35_4_a4,
author = {Sh. Payrovi and M. Lotfi Parsa},
title = {Artinianness of {Local} {Cohomology} {Modules} {Defined} by a {Pair} of {Ideals}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {4},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a4/}
}
Sh. Payrovi; M. Lotfi Parsa. Artinianness of Local Cohomology Modules Defined by a Pair of Ideals. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a4/